14.1 Overview

- Role in removal of wastes to maintain homeostasis
 - Acts as filtering system of the blood
 - Produces urine
- Removes wastes, maintains pH, electrolyte composition, and water content of blood
Gross Anatomy of Urinary System

- **Kidneys** – form urine
 - Pair – true workhorses of system
 - Form in early week 5
 - Early kidneys drain into umbilical cord
 - Not functional until week 9

- **Ureters**
 - Tubes that send urine from the kidneys to the bladder

- **Urinary bladder**
 - Sac-like organ that serves as reservoir for urine storage

- **Urethra**
 - Tube that transfers urine from the bladder to the body’s exterior
Kidney – External Anatomy

- Bean-shaped – located bilaterally near the midline of abdomen
 - Left a little superior to the right
- Not in the abdominal cavity
 - Lie retroperitoneal – behind peritoneum
- Adipose (fat) – encases each organ
- Renal fascia – CT that secures kidneys to posterior abdominal wall
- Each kidney capped by adrenal gland (produce different steroid)
- Positioned so that the hilus, concave indentation, is medial to the body
 - Entry point for renal artery and exit point for renal vein
 - Artery – carried blood to kidney
 - Vein – blood from kidney to vena cava
Kidney – External Anatomy
Kidney – Internal Anatomy

• 3 easily distinguishable areas (superficial to deep)
 • Renal cortex
 • Renal medulla
 • Soft, marrow-like
 • Renal pyramids
 • Renal columns – separate renal pyramids
 • Collects urine
 • Renal pelvis
 • Where formed urine is collected before it enters the ureter
 • Calcyes (calyx) – extension of renal pelvis; transfers urine from renal pyramids
 • Connected to ureter at each kidney’s hilus
Ureters

- Long, thin muscular tubes that are also in retroperitoneal position
 - Extend inferiorly from the hilus and enter the urinary bladder posteriorly at separate locations on bladder floor
- Function only in urine transport
 - Help gravity through peristaltic contractions
- Do not have valves that close to prevent urine from passing into the bladder
 - Bladders exerts upward pressure on them as it fills
 - Pressure pinches tube ends and closes them off
Ureters
Urinary Bladder

- Inferior in pelvic cavity
- Accumulates and temporarily stores urine
- In females, structure is located anterior and slightly inferior to uterus
 - Explains need for frequent urination during pregnancy
- In males, superior to prostate gland
 - when enlarged, can cause urination problems
- Transitional epithelium – tissue that can change shape with expansion and contraction
 - Lining of bladder
• **Detrusor muscle** – smooth muscle of urinary bladder
 • Wall of bladder – crisscross arrangement
• **Trigone** – smooth triangular area of urinary bladder floor
 • Has three openings
 • 2 for ureters at the corners
 • Urethra at base
• **Internal urinary sphincter** – involuntary circular muscle
 • Keeps the ureter closed
• **Can hold up to 1 liter of urine**
 • Causes extremely uncomfortable pressure
 • Need to void typically is felt at 20% capacity
Urinary Bladder

- Median umbilical ligament
- Ureter
- Peritoneum
- Detrusor muscle
- Ureteral openings
- Trigone
- Neck of urinary bladder
- Internal urethral sphincter
- External urethral sphincter (in urogenital diaphragm)

- Transitional epithelium
- Lamina propria
- Submucosa
- Detrusor muscle
- Adventitia
Urethra

- Forms passageway from bladder to body’s exterior
- Single muscular tube, closure is controlled by voluntary muscle called external urethral sphincter
- Urethral orifice – external opening when urine exits body
- Male urethra longer than females
 - Descends through prostrate and the full length of penis
 - Also carries semen
- Female – sole function is to carry urine
 - Bladder is closer to body’s exterior – more susceptible to entry of bacteria because of proximity to anal area
 - More prone to UTI or urinary bladder infections
14.2 Urine Voiding

- Urination = emptying the bladder
 - Micturition – medical term for elimination of urine from the bladder
- Infant – immature nervous system – external urethral sphincter not yet under voluntary control
 - Urination occurs reflexively as bladder detects accumulated urine
- As nervous system matures, voluntary control is gained
- Incontinence, inability to hold urine
 - Decrease competence of urinary sphincter muscles
Urine Voiding, cont.

- Anuria – inability to produce urine
 - Can be indicator of health disorders like renal failure
 - Can be fatal if waste is not eliminated from body
- Urinary retention – inability to expel urine from bladder
- Catheter – tube inserted into urethra to expel urine
 - Can relieve urinary retention
- Oliguria – decreased urine production
 - Can indicate kidney damage or ureter obstruction
- Polyuria – production of excess urine
 - Can indicate diabetes mellitus
- Nephrons – tubular structures that filter the urine in kidneys
 - Responsible for many physiological processes involved in urine formation
The Nephrons

- Thousands are present in each kidney
- Carry out several of kidney’s many jobs
- Each is composed of an arrangement of renal tubules – has intricate vascular network
- Consists of uniquely folded capillary network called the glomerulus
 - Originates from the afferent arteriole (blood vessel that narrows to become glomerulus)
- Glomerulus is surrounded by Bowman’s capsule
 - Expanded portion of renal tube
- Bowman’s capsule and the glomerulus are tucked within a structure called the renal corpuscle
- Distal end exits efferent arteriole – formed by glomerulus
Urine Formation

- Three Stages
 - Glomerular filtration
 - Tubular reabsorption
 - Tubular secretion
Urine Formation definitions

- **Glomerular Filtration**
 - The process by which plasma and many dissolved substances are moved from the blood into Bowman’s capsule

- **Tubular Reabsorption**
 - A process in the peritubular capillary system in which water, nutrients, and electrolytes travel back into the blood

- **Tubular Secretion**
 - The process by which certain waste products and ions are removed from the blood into the tubular fluid
Hormonal Regulation of Urine Formation

- Various hormones involved in controlling rate and volume of urine production
 - Release of hormone is elicited by specific change detected in body
- Anti-diuretic hormone (ADH)—produced by pituitary gland in response to dehydration
 - Greatly influences diuresis, or excretion of water from body
- Aldosterone—adrenal cortex steroid
 - In response to high levels of blood potassium ions, is produced to increase water movement out of distal tubule
 - Creates concentration gradient for outward movement of water
Hormones, cont.

- Atrial natriuretic factor (ANF) – secreted by special cardiac cells
 - Lowers blood volume and blood pressure
 - Antagonistic to aldosterone
 - Lowers sodium ion reabsorption
- Angiotensin II elevates blood pressure through vasoconstriction
 - the consequent increase in pressure within the glomerular capillaries increases filtration and elevates urine output.
Most urinary system disorders fall under one or more of the following categories:

- Congenital disorders
- Infection and inflammation
- Immune disorders
- Hormonal disorders
- Degenerative disorders
- Tumors
Congenital Disorders

- *Present @ birth
- Polycystic kidney disease – inherited disease that causes the growth of kidney cysts
 - Can require hemodialysis – allows for artificial filtering of the blood
 - Has risks such as infection, but is better than the alternative which is renal failure, then death
- Glycosuria – presence of glucose in blood
 - Increases solute of urine
 - From failure of renal absorption of glucose
- Aminoaciduria – presence of amino acids in the urine
 - Can result in crystallization and subsequent formation of painful “stones” of calculi, in the kidney or bladder
 - Nephrolith – alternate name for a calculi
Infection and Inflammation

- Urinary tract infection (UTI) – inflammation caused by bacteria
 - Can be anywhere in urinary tract
- Urethritis – inflammation of urethra
- Cystitis – inflammation of urinary bladder
- Pyelitis – inflammation of the renal pelvis
- Pyelonephritis – inflammation of the nephrons
- Dysuria – painful urination
 - Accompanies UTIs
- Pyuria – presence of white blood cells in urine
 - Indicates UTI
 - In addition to WBC (leukocytes), also high in nitrate levels
Immune Disorders

- Glomerulonephritis – autoimmune disorder causing inflammation and deterioration of the glomerular membranes
 - Can be caused by streptococcal bacteria infection
 - Causes edema – accumulation of fluids in the body tissues
- Hematuria – presence of red blood cells in urine
- Proteinuria – presence of abnormal protein levels in the urine
- Cast – abnormal aggregate of cells found in urine
Hormonal Disorders

- Addison’s disease – abnormally low aldosterone
 - Causes sodium excretion, excess water loss, dehydration, and hypertension
- Diuretics – increase volume of water in urine
 - Due to decrease in sodium absorption
 - Can be used to treat hypertension because increased water loss decreases blood volume and lowers blood pressure
 - Can also treat edema
Degenerative Disorders

- Chronic renal failure – irreparable nephron damage and loss of kidney function
 - causes buildup of urea in the blood
- Acute renal failure – temporary loss of kidney function
 - Proper nephron function in only 1/3 of a single kidney can keep a person alive
 - Still need hemodialysis
- Renal cell carcinoma – malignancy of the cells of the renal tubular lining
 - Most common form of kidney cancer
- Bladder cancer – malignancy of the tissue of the bladder
 - Hard to detect without medical imaging and symptoms present as a UTI.
Aging of Urinary System

- Nephroptosis – movement of the kidneys from its proper anatomical position to an inferior position
 - Due to forces of gravity and loss of fat – usually in elderly
- Cystocele – herniation of the bladder into the vagina
 - From continual pressure of the bladder on the structural connections that hold it in place
 - Pregnancy and multiple pregnancies increases this risk
- Incontinence due to degradation of the sphincter muscles surrounding urethra
- Urinary retention is seen in males due to hypertrophy of the prostate gland as early as 40
 - Restricts urethral passageway